Preparation of Boron Nitride

Boron Nitride exists in several forms—Hexagonal Boron Nitride (h-BN), Cubic Boron Nitride (c-BN), Wurtzite Boron Nitride (w-BN), and Amorphous Boron Nitride (a-BN). The synthesis method strongly influences which phase is produced.

1. Direct Reaction of Boron and Nitrogen

Method

Heat elemental boron with nitrogen gas (N₂) or ammonia (NH₃) at high temperature.

Reaction

  • With nitrogen: 2B + N₂ → 2BN
  • With ammonia: B + NH₃ → BN + 3/2 H₂

Conditions

  • Temperature: 1000–1500 °C
  • Atmosphere: N₂, NH₃, or vacuum
  • Used mainly for Hexagonal Boron Nitride (h-BN) synthesis.

Advantages

  • Simple and relatively low-cost
  • Produces high-purity Boron Nitride (BN)
Preparation of Boron Nitride-Xi'an Lyphar Biotech Co., Ltd

2. Reaction of Boron Oxide with Ammonia or Nitrogen

This is one of the most common industrial methods.

Reaction

  • Convert boric acid → boron oxide: 2 H₃BO₃ → B₂O₃ + 3 H₂O (dehydration)
  • React B₂O₃ with ammonia: B₂O₃ + 2 NH₃ → 2 BN + 3 H₂O

Conditions

  • Temperature: 900–1200 °C
  • Atmospheric or flowing NH₃

Advantages

  • Uses inexpensive precursors
  • Good for mass production of Hexagonal Boron Nitride (h-BN) powder

3. Carbothermal Reduction–Nitridation

Method

Mix boron oxide (B₂O₃) with carbon and heat in nitrogen.

Reaction

B₂O₃ + 3C + N₂ → 2BN + 3CO

Conditions

  • Temperature: 1400–1800 °C

Advantages

  • Low-cost and scalable

Disadvantages

  • Carbon contamination may occur
Preparation of Boron Nitride-Xi'an Lyphar Biotech Co., Ltd

4. Chemical Vapor Deposition (CVD)

Used to make thin films of high-quality Boron Nitride.

Precursors

  • BCl₃ + NH₃
  • B₂H₆ + NH₃
  • B-trichloroborazine (B₃N₃Cl₃)

General Reaction

BCl₃ + NH₃ → BN + 3HCl

Conditions

  • Temperature: 600–1200 °C
  • Used to make: Hexagonal Boron Nitride (h-BN) films, coatings, 2D Boron Nitride (“white graphene”)

Advantages

  • High-purity, uniform films
  • Suitable for electronics and coatings

5. Solvothermal or Polymer-Derived Ceramic (PDC) Method

Use borazine (B₃N₃H₆) or polyborazylene precursors.

Steps

  • Polymer formation (cross-linking)
  • Pyrolysis at ~1000 °C
  • Crystallization into Boron Nitride (BN)

Advantages

  • Produces high-purity Hexagonal Boron Nitride (h-BN)
  • Good control over morphology (fibers, spheres, nanosheets)
Preparation of Boron Nitride-Xi'an Lyphar Biotech Co., Ltd

6. High-Pressure High-Temperature (HPHT) Synthesis — For Cubic Boron Nitride (c-BN)

Cubic Boron Nitride (c-BN) requires extreme conditions similar to diamond synthesis.

Method

Heat Hexagonal Boron Nitride (h-BN) under:

  • Pressure: 5–7 GPa
  • Temperature: 1500–2000 °C
  • Catalyst: alkali metals, nitrides, or carbonates

Reaction

  • Hexagonal Boron Nitride (h-BN) → Cubic Boron Nitride (c-BN) (phase transformation)

Products

Cubic Boron Nitride (c-BN) (superhard material comparable to diamond)

Summary Table

Boron Nitride(BN) FormCommon MethodKey Conditions
Hexagonal Boron Nitride (h-BN)Direct nitridation, B₂O₃ + NH₃, CVD, polymer-derived900–1500 °C
Cubic Boron Nitride (c-BN)HPHT transformation~5–7 GPa, 1500–2000 °C
Boron Nitride (BN) FilmsCVD, PVD, ALD600–1200 °C